MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. N12160 Nickel

C64800 bronze belongs to the copper alloys classification, while N12160 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0
45
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
80
Shear Strength, MPa 380
500
Tensile Strength: Ultimate (UTS), MPa 640
710
Tensile Strength: Yield (Proof), MPa 630
270

Thermal Properties

Latent Heat of Fusion, J/g 220
360
Maximum Temperature: Mechanical, °C 200
1060
Melting Completion (Liquidus), °C 1090
1330
Melting Onset (Solidus), °C 1030
1280
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 33
90
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.7
8.5
Embodied Energy, MJ/kg 43
120
Embodied Water, L/kg 310
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
260
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
180
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 75
2.8
Thermal Shock Resistance, points 23
19

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.090
26 to 30
Cobalt (Co), % 1.0 to 3.0
27 to 33
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
0 to 3.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.5
0 to 0.030
Silicon (Si), % 0.2 to 1.0
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0