MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. S31100 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
4.5
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
79
Shear Strength, MPa 380
580
Tensile Strength: Ultimate (UTS), MPa 640
1000
Tensile Strength: Yield (Proof), MPa 630
710

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
16
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 43
44
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
40
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
1240
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
36
Strength to Weight: Bending, points 19
29
Thermal Diffusivity, mm2/s 75
4.2
Thermal Shock Resistance, points 23
28

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.090
25 to 27
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
63.6 to 69
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
6.0 to 7.0
Phosphorus (P), % 0 to 0.5
0 to 0.045
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0