MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. S32760 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while S32760 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Shear Strength, MPa 380
550
Tensile Strength: Ultimate (UTS), MPa 640
850
Tensile Strength: Yield (Proof), MPa 630
620

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
22
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.1
Embodied Energy, MJ/kg 43
57
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
930
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
30
Strength to Weight: Bending, points 19
25
Thermal Diffusivity, mm2/s 75
4.0
Thermal Shock Resistance, points 23
23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.090
24 to 26
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0.5 to 1.0
Iron (Fe), % 0 to 1.0
57.6 to 65.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.5
0 to 0.030
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.5
0
Tungsten (W), % 0
0.5 to 1.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0