MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. S32906 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
81
Shear Strength, MPa 380
550
Tensile Strength: Ultimate (UTS), MPa 640
850
Tensile Strength: Yield (Proof), MPa 630
620

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
13
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 43
52
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
950
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
30
Strength to Weight: Bending, points 19
26
Thermal Diffusivity, mm2/s 75
3.6
Thermal Shock Resistance, points 23
23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.090
28 to 30
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0 to 0.8
Iron (Fe), % 0 to 1.0
56.6 to 63.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0 to 0.5
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.5
0 to 0.030
Silicon (Si), % 0.2 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0