MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. S35045 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while S35045 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
78
Shear Strength, MPa 380
370
Tensile Strength: Ultimate (UTS), MPa 640
540
Tensile Strength: Yield (Proof), MPa 630
190

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1390
Melting Onset (Solidus), °C 1030
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
34
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.8
Embodied Energy, MJ/kg 43
83
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
94
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 75
3.2
Thermal Shock Resistance, points 23
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0 to 0.090
25 to 29
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0 to 0.75
Iron (Fe), % 0 to 1.0
29.4 to 42.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.5
32 to 37
Phosphorus (P), % 0 to 0.5
0 to 0.045
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0