MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. S41050 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while S41050 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 380
300
Tensile Strength: Ultimate (UTS), MPa 640
470
Tensile Strength: Yield (Proof), MPa 630
230

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 200
720
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 66
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 43
27
Embodied Water, L/kg 310
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
98
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
140
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 75
7.2
Thermal Shock Resistance, points 23
17

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.090
10.5 to 12.5
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
84.2 to 88.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0.6 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.5
0 to 0.045
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0