MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. S46500 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while S46500 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is S46500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
2.3 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Shear Strength, MPa 380
730 to 1120
Tensile Strength: Ultimate (UTS), MPa 640
1260 to 1930
Tensile Strength: Yield (Proof), MPa 630
1120 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 200
780
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Expansion, µm/m-K 17
11

Otherwise Unclassified Properties

Base Metal Price, % relative 33
15
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 43
51
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
43 to 210
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
44 to 68
Strength to Weight: Bending, points 19
33 to 44
Thermal Shock Resistance, points 23
44 to 67

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.090
11 to 12.5
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
72.6 to 76.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.25
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0 to 0.5
10.7 to 11.3
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.5
0 to 0.015
Silicon (Si), % 0.2 to 1.0
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
1.5 to 1.8
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0