MakeItFrom.com
Menu (ESC)

C65100 Bronze vs. S31266 Stainless Steel

C65100 bronze belongs to the copper alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65100 bronze and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.4 to 50
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 200 to 350
590
Tensile Strength: Ultimate (UTS), MPa 280 to 560
860
Tensile Strength: Yield (Proof), MPa 95 to 440
470

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 57
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
37
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 2.6
6.5
Embodied Energy, MJ/kg 41
89
Embodied Water, L/kg 300
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
290
Resilience: Unit (Modulus of Resilience), kJ/m3 39 to 820
540
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.7 to 18
29
Strength to Weight: Bending, points 11 to 17
24
Thermal Diffusivity, mm2/s 16
3.1
Thermal Shock Resistance, points 9.5 to 19
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 94.5 to 99.2
1.0 to 2.5
Iron (Fe), % 0 to 0.8
34.1 to 46
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.7
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.8 to 2.0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0