MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. C36500 Muntz Metal

Both C65400 bronze and C36500 Muntz Metal are copper alloys. They have 60% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 2.6 to 47
40
Poisson's Ratio 0.34
0.3
Rockwell B Hardness 82 to 120
45
Shear Modulus, GPa 43
39
Shear Strength, MPa 350 to 530
270
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
400
Tensile Strength: Yield (Proof), MPa 170 to 910
160

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1020
900
Melting Onset (Solidus), °C 960
890
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 36
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
32

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
120
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 16 to 34
14
Strength to Weight: Bending, points 16 to 27
15
Thermal Diffusivity, mm2/s 10
40
Thermal Shock Resistance, points 18 to 39
13

Alloy Composition

Chromium (Cr), % 0.010 to 0.12
0
Copper (Cu), % 93.8 to 96.1
58 to 61
Iron (Fe), % 0
0 to 0.15
Lead (Pb), % 0 to 0.050
0.25 to 0.7
Silicon (Si), % 2.7 to 3.4
0
Tin (Sn), % 1.2 to 1.9
0 to 0.25
Zinc (Zn), % 0 to 0.5
37.5 to 41.8
Residuals, % 0
0 to 0.4