MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. S15500 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.6 to 47
6.8 to 16
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Shear Strength, MPa 350 to 530
540 to 870
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
890 to 1490
Tensile Strength: Yield (Proof), MPa 170 to 910
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 200
820
Melting Completion (Liquidus), °C 1020
1430
Melting Onset (Solidus), °C 960
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
890 to 4460
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 34
32 to 53
Strength to Weight: Bending, points 16 to 27
26 to 37
Thermal Diffusivity, mm2/s 10
4.6
Thermal Shock Resistance, points 18 to 39
30 to 50

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.010 to 0.12
14 to 15.5
Copper (Cu), % 93.8 to 96.1
2.5 to 4.5
Iron (Fe), % 0
71.9 to 79.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0