MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. S17400 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.6 to 47
11 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Shear Strength, MPa 350 to 530
570 to 830
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
910 to 1390
Tensile Strength: Yield (Proof), MPa 170 to 910
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 200
850
Melting Completion (Liquidus), °C 1020
1440
Melting Onset (Solidus), °C 960
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
14
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
880 to 4060
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 34
32 to 49
Strength to Weight: Bending, points 16 to 27
27 to 35
Thermal Diffusivity, mm2/s 10
4.5
Thermal Shock Resistance, points 18 to 39
30 to 46

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.010 to 0.12
15 to 17
Copper (Cu), % 93.8 to 96.1
3.0 to 5.0
Iron (Fe), % 0
70.4 to 78.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0