MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. S31254 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.6 to 47
40
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 82 to 120
84
Shear Modulus, GPa 43
80
Shear Strength, MPa 350 to 530
490
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
720
Tensile Strength: Yield (Proof), MPa 170 to 910
330

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 200
1090
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 960
1420
Specific Heat Capacity, J/kg-K 400
460
Thermal Conductivity, W/m-K 36
14
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 2.8
5.5
Embodied Energy, MJ/kg 45
74
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
240
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
270
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 34
25
Strength to Weight: Bending, points 16 to 27
22
Thermal Diffusivity, mm2/s 10
3.8
Thermal Shock Resistance, points 18 to 39
15

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.010 to 0.12
19.5 to 20.5
Copper (Cu), % 93.8 to 96.1
0.5 to 1.0
Iron (Fe), % 0
51.4 to 56.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 2.7 to 3.4
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0