MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. S32950 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while S32950 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is S32950 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.6 to 47
17
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
80
Shear Strength, MPa 350 to 530
480
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
780
Tensile Strength: Yield (Proof), MPa 170 to 910
550

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1020
1430
Melting Onset (Solidus), °C 960
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
17
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
730
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 34
28
Strength to Weight: Bending, points 16 to 27
24
Thermal Diffusivity, mm2/s 10
4.3
Thermal Shock Resistance, points 18 to 39
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.010 to 0.12
26 to 29
Copper (Cu), % 93.8 to 96.1
0
Iron (Fe), % 0
60.3 to 69.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 2.5
Nickel (Ni), % 0
3.5 to 5.2
Nitrogen (N), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.7 to 3.4
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0