MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. EN 2.4816 Nickel

C65500 bronze belongs to the copper alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 70
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 260 to 440
470
Tensile Strength: Ultimate (UTS), MPa 360 to 760
700
Tensile Strength: Yield (Proof), MPa 120 to 430
270

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 1030
1370
Melting Onset (Solidus), °C 970
1320
Specific Heat Capacity, J/kg-K 400
460
Thermal Conductivity, W/m-K 36
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.6
8.5
Embodied Carbon, kg CO2/kg material 2.7
9.0
Embodied Energy, MJ/kg 42
130
Embodied Water, L/kg 300
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
190
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
190
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 12 to 24
23
Strength to Weight: Bending, points 13 to 21
21
Thermal Diffusivity, mm2/s 10
3.8
Thermal Shock Resistance, points 12 to 26
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 91.5 to 96.7
0 to 0.5
Iron (Fe), % 0 to 0.8
6.0 to 10
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.5 to 1.3
0 to 1.0
Nickel (Ni), % 0 to 0.6
72 to 80
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 2.8 to 3.8
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.3
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0