MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. C90200 Bronze

Both C65500 bronze and C90200 bronze are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 4.0 to 70
30
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 360 to 760
260
Tensile Strength: Yield (Proof), MPa 120 to 430
110

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1030
1050
Melting Onset (Solidus), °C 970
880
Specific Heat Capacity, J/kg-K 400
370
Thermal Conductivity, W/m-K 36
62
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
34
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 42
53
Embodied Water, L/kg 300
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
63
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
55
Stiffness to Weight: Axial, points 7.5
7.0
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 12 to 24
8.3
Strength to Weight: Bending, points 13 to 21
10
Thermal Diffusivity, mm2/s 10
19
Thermal Shock Resistance, points 12 to 26
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 91.5 to 96.7
91 to 94
Iron (Fe), % 0 to 0.8
0 to 0.2
Lead (Pb), % 0 to 0.050
0 to 0.3
Manganese (Mn), % 0.5 to 1.3
0
Nickel (Ni), % 0 to 0.6
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 2.8 to 3.8
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0 to 1.5
0 to 0.5
Residuals, % 0
0 to 0.6