MakeItFrom.com
Menu (ESC)

C65500 Bronze vs. S43037 Stainless Steel

C65500 bronze belongs to the copper alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C65500 bronze and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 4.0 to 70
25
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 62 to 97
77
Shear Modulus, GPa 43
77
Shear Strength, MPa 260 to 440
260
Tensile Strength: Ultimate (UTS), MPa 360 to 760
410
Tensile Strength: Yield (Proof), MPa 120 to 430
230

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 200
880
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 42
32
Embodied Water, L/kg 300
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 450
88
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 790
130
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 24
15
Strength to Weight: Bending, points 13 to 21
16
Thermal Diffusivity, mm2/s 10
6.7
Thermal Shock Resistance, points 12 to 26
14

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 91.5 to 96.7
0
Iron (Fe), % 0 to 0.8
77.9 to 83.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.5 to 1.3
0 to 1.0
Nickel (Ni), % 0 to 0.6
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.8 to 3.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0