MakeItFrom.com
Menu (ESC)

C66100 Bronze vs. C82500 Copper

Both C66100 bronze and C82500 copper are copper alloys. They have a very high 95% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66100 bronze and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.0 to 40
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 410 to 790
550 to 1100
Tensile Strength: Yield (Proof), MPa 120 to 430
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 200
280
Melting Completion (Liquidus), °C 1050
980
Melting Onset (Solidus), °C 1000
860
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 34
130
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 42
160
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 120
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 790
400 to 4000
Stiffness to Weight: Axial, points 7.4
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 13 to 25
18 to 35
Strength to Weight: Bending, points 14 to 22
17 to 27
Thermal Diffusivity, mm2/s 9.7
38
Thermal Shock Resistance, points 15 to 29
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 92 to 97
95.3 to 97.8
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0.2 to 0.8
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 2.8 to 3.5
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0 to 1.5
0 to 0.1
Residuals, % 0
0 to 0.5