MakeItFrom.com
Menu (ESC)

C66200 Brass vs. AISI 384 Stainless Steel

C66200 brass belongs to the copper alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 450 to 520
480

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 1070
1420
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
20
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 43
52
Embodied Water, L/kg 320
150

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
17
Strength to Weight: Bending, points 15 to 16
17
Thermal Diffusivity, mm2/s 45
4.3
Thermal Shock Resistance, points 16 to 18
11

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
60.9 to 68
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0.3 to 1.0
17 to 19
Phosphorus (P), % 0.050 to 0.2
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0