MakeItFrom.com
Menu (ESC)

C66200 Brass vs. AISI 431 Stainless Steel

C66200 brass belongs to the copper alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
15 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 270 to 300
550 to 840
Tensile Strength: Ultimate (UTS), MPa 450 to 520
890 to 1380
Tensile Strength: Yield (Proof), MPa 410 to 480
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
850
Melting Completion (Liquidus), °C 1070
1510
Melting Onset (Solidus), °C 1030
1450
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 43
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
1270 to 2770
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
32 to 50
Strength to Weight: Bending, points 15 to 16
27 to 36
Thermal Diffusivity, mm2/s 45
7.0
Thermal Shock Resistance, points 16 to 18
28 to 43

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
78.2 to 83.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.3 to 1.0
1.3 to 2.5
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0