MakeItFrom.com
Menu (ESC)

C66200 Brass vs. EN 1.1165 Cast Steel

C66200 brass belongs to the copper alloys classification, while EN 1.1165 cast steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is EN 1.1165 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.0 to 15
11 to 20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 450 to 520
600 to 780
Tensile Strength: Yield (Proof), MPa 410 to 480
290 to 620

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.9
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 320
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
230 to 1010
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
21 to 28
Strength to Weight: Bending, points 15 to 16
20 to 24
Thermal Diffusivity, mm2/s 45
14
Thermal Shock Resistance, points 16 to 18
19 to 25

Alloy Composition

Carbon (C), % 0
0.25 to 0.32
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
97.2 to 98.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.2 to 1.8
Nickel (Ni), % 0.3 to 1.0
0
Phosphorus (P), % 0.050 to 0.2
0 to 0.035
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0

Comparable Variants