MakeItFrom.com
Menu (ESC)

C66200 Brass vs. EN 1.4823 Stainless Steel

C66200 brass belongs to the copper alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
3.4
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 450 to 520
620
Tensile Strength: Yield (Proof), MPa 410 to 480
290

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1070
1400
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
16
Density, g/cm3 8.7
7.6
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 43
43
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
17
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
200
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 14 to 17
23
Strength to Weight: Bending, points 15 to 16
21
Thermal Diffusivity, mm2/s 45
4.5
Thermal Shock Resistance, points 16 to 18
17

Alloy Composition

Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
60.9 to 70.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.3 to 1.0
3.0 to 6.0
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0