MakeItFrom.com
Menu (ESC)

C66200 Brass vs. EN 1.8527 Steel

C66200 brass belongs to the copper alloys classification, while EN 1.8527 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is EN 1.8527 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.0 to 15
16
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 270 to 300
550
Tensile Strength: Ultimate (UTS), MPa 450 to 520
900
Tensile Strength: Yield (Proof), MPa 410 to 480
800

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 180
490
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 36
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.0
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 43
23
Embodied Water, L/kg 320
66

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
140
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
1670
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
32
Strength to Weight: Bending, points 15 to 16
26
Thermal Diffusivity, mm2/s 45
11
Thermal Shock Resistance, points 16 to 18
26

Alloy Composition

Carbon (C), % 0
0.040 to 0.12
Chromium (Cr), % 0
3.7 to 4.3
Copper (Cu), % 86.6 to 91
0 to 0.25
Iron (Fe), % 0 to 0.050
93.2 to 95.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.85 to 1.2
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0.3 to 1.0
0
Phosphorus (P), % 0.050 to 0.2
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0