MakeItFrom.com
Menu (ESC)

C66200 Brass vs. Nickel 690

C66200 brass belongs to the copper alloys classification, while nickel 690 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is nickel 690.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
3.4 to 34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Shear Strength, MPa 270 to 300
420 to 570
Tensile Strength: Ultimate (UTS), MPa 450 to 520
640 to 990
Tensile Strength: Yield (Proof), MPa 410 to 480
250 to 760

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 1070
1380
Melting Onset (Solidus), °C 1030
1340
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 36
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
50
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 43
120
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
31 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
160 to 1440
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
21 to 33
Strength to Weight: Bending, points 15 to 16
20 to 27
Thermal Diffusivity, mm2/s 45
3.5
Thermal Shock Resistance, points 16 to 18
16 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 86.6 to 91
0 to 0.5
Iron (Fe), % 0 to 0.050
7.0 to 11
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.3 to 1.0
58 to 66
Phosphorus (P), % 0.050 to 0.2
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0