MakeItFrom.com
Menu (ESC)

C66200 Brass vs. Nickel 825

C66200 brass belongs to the copper alloys classification, while nickel 825 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is nickel 825.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 270 to 300
430
Tensile Strength: Ultimate (UTS), MPa 450 to 520
650
Tensile Strength: Yield (Proof), MPa 410 to 480
260

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 1070
1400
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 36
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
41
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 2.7
7.2
Embodied Energy, MJ/kg 43
100
Embodied Water, L/kg 320
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
180
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
170
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
22
Strength to Weight: Bending, points 15 to 16
20
Thermal Diffusivity, mm2/s 45
2.9
Thermal Shock Resistance, points 16 to 18
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19.5 to 23.5
Copper (Cu), % 86.6 to 91
1.5 to 3.0
Iron (Fe), % 0 to 0.050
22 to 37.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0.3 to 1.0
38 to 46
Phosphorus (P), % 0.050 to 0.2
0
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Titanium (Ti), % 0
0.6 to 1.2
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0