MakeItFrom.com
Menu (ESC)

C66200 Brass vs. C96200 Copper-nickel

Both C66200 brass and C96200 copper-nickel are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.0 to 15
23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
46
Tensile Strength: Ultimate (UTS), MPa 450 to 520
350
Tensile Strength: Yield (Proof), MPa 410 to 480
190

Thermal Properties

Latent Heat of Fusion, J/g 200
220
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 1070
1150
Melting Onset (Solidus), °C 1030
1100
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
11
Electrical Conductivity: Equal Weight (Specific), % IACS 36
11

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 43
58
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
68
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
150
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 14 to 17
11
Strength to Weight: Bending, points 15 to 16
13
Thermal Diffusivity, mm2/s 45
13
Thermal Shock Resistance, points 16 to 18
12

Alloy Composition

Carbon (C), % 0
0 to 0.1
Copper (Cu), % 86.6 to 91
83.6 to 90
Iron (Fe), % 0 to 0.050
1.0 to 1.8
Lead (Pb), % 0 to 0.050
0 to 0.010
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0.3 to 1.0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0.050 to 0.2
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0
0 to 0.5