MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S17400 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.0 to 15
11 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 270 to 300
570 to 830
Tensile Strength: Ultimate (UTS), MPa 450 to 520
910 to 1390
Tensile Strength: Yield (Proof), MPa 410 to 480
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
850
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
14
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 43
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
880 to 4060
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
32 to 49
Strength to Weight: Bending, points 15 to 16
27 to 35
Thermal Diffusivity, mm2/s 45
4.5
Thermal Shock Resistance, points 16 to 18
30 to 46

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 86.6 to 91
3.0 to 5.0
Iron (Fe), % 0 to 0.050
70.4 to 78.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.3 to 1.0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0