MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S33228 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Shear Strength, MPa 270 to 300
380
Tensile Strength: Ultimate (UTS), MPa 450 to 520
570
Tensile Strength: Yield (Proof), MPa 410 to 480
210

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1070
1410
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 390
470
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 29
37
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 43
89
Embodied Water, L/kg 320
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
150
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
20
Strength to Weight: Bending, points 15 to 16
19
Thermal Shock Resistance, points 16 to 18
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
36.5 to 42.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.3 to 1.0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0.050 to 0.2
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0