MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S41045 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S41045 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S41045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.0 to 15
25
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 270 to 300
280
Tensile Strength: Ultimate (UTS), MPa 450 to 520
430
Tensile Strength: Yield (Proof), MPa 410 to 480
230

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
29
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
8.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 43
31
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
92
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
16
Strength to Weight: Bending, points 15 to 16
16
Thermal Diffusivity, mm2/s 45
7.8
Thermal Shock Resistance, points 16 to 18
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 13
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
83.8 to 88
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.3 to 1.0
0 to 0.5
Niobium (Nb), % 0
0 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0