MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S44537 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
21
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
79
Shear Strength, MPa 270 to 300
320
Tensile Strength: Ultimate (UTS), MPa 450 to 520
510
Tensile Strength: Yield (Proof), MPa 410 to 480
360

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 1070
1480
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 43
50
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
95
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
320
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
18
Strength to Weight: Bending, points 15 to 16
18
Thermal Diffusivity, mm2/s 45
5.6
Thermal Shock Resistance, points 16 to 18
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 86.6 to 91
0 to 0.5
Iron (Fe), % 0 to 0.050
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0.3 to 1.0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0.050 to 0.2
0 to 0.050
Silicon (Si), % 0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Tin (Sn), % 0.2 to 0.7
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0