MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S44635 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 8.0 to 15
23
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
81
Shear Strength, MPa 270 to 300
450
Tensile Strength: Ultimate (UTS), MPa 450 to 520
710
Tensile Strength: Yield (Proof), MPa 410 to 480
580

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
22
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.4
Embodied Energy, MJ/kg 43
62
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
150
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
810
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
25
Strength to Weight: Bending, points 15 to 16
23
Thermal Diffusivity, mm2/s 45
4.4
Thermal Shock Resistance, points 16 to 18
23

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
61.5 to 68.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0.3 to 1.0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0