MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S44660 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 8.0 to 15
20
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
81
Shear Strength, MPa 270 to 300
410
Tensile Strength: Ultimate (UTS), MPa 450 to 520
660
Tensile Strength: Yield (Proof), MPa 410 to 480
510

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
21
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
4.3
Embodied Energy, MJ/kg 43
61
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
120
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
640
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
24
Strength to Weight: Bending, points 15 to 16
22
Thermal Diffusivity, mm2/s 45
4.5
Thermal Shock Resistance, points 16 to 18
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 86.6 to 91
0
Iron (Fe), % 0 to 0.050
60.4 to 71
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0.3 to 1.0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0