MakeItFrom.com
Menu (ESC)

C66200 Brass vs. S45000 Stainless Steel

C66200 brass belongs to the copper alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C66200 brass and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.0 to 15
6.8 to 14
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 270 to 300
590 to 830
Tensile Strength: Ultimate (UTS), MPa 450 to 520
980 to 1410
Tensile Strength: Yield (Proof), MPa 410 to 480
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
840
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1030
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 43
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 66
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 760 to 1030
850 to 4400
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
35 to 50
Strength to Weight: Bending, points 15 to 16
28 to 36
Thermal Diffusivity, mm2/s 45
4.5
Thermal Shock Resistance, points 16 to 18
33 to 47

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 86.6 to 91
1.3 to 1.8
Iron (Fe), % 0 to 0.050
72.1 to 79.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0.3 to 1.0
5.0 to 7.0
Phosphorus (P), % 0.050 to 0.2
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.7
0
Zinc (Zn), % 6.5 to 12.9
0
Residuals, % 0 to 0.5
0