MakeItFrom.com
Menu (ESC)

C66300 Brass vs. 444.0 Aluminum

C66300 brass belongs to the copper alloys classification, while 444.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C66300 brass and the bottom bar is 444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 2.3 to 22
25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
27
Tensile Strength: Ultimate (UTS), MPa 460 to 810
190
Tensile Strength: Yield (Proof), MPa 400 to 800
83

Thermal Properties

Latent Heat of Fusion, J/g 200
500
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1050
610
Melting Onset (Solidus), °C 1000
600
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 110
160
Thermal Expansion, µm/m-K 18
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
40
Electrical Conductivity: Equal Weight (Specific), % IACS 26
140

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 2.8
7.9
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 320
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
39
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
49
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
53
Strength to Weight: Axial, points 15 to 26
20
Strength to Weight: Bending, points 15 to 22
28
Thermal Diffusivity, mm2/s 32
67
Thermal Shock Resistance, points 16 to 28
8.8

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0 to 0.25
Iron (Fe), % 1.4 to 2.4
0 to 0.6
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.35
Phosphorus (P), % 0 to 0.35
0
Silicon (Si), % 0
6.5 to 7.5
Tin (Sn), % 1.5 to 3.0
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 6.0 to 12.8
0 to 0.35
Residuals, % 0
0 to 0.15