MakeItFrom.com
Menu (ESC)

C66300 Brass vs. AISI 204 Stainless Steel

C66300 brass belongs to the copper alloys classification, while AISI 204 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is AISI 204 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3 to 22
23 to 39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 290 to 470
500 to 700
Tensile Strength: Ultimate (UTS), MPa 460 to 810
730 to 1100
Tensile Strength: Yield (Proof), MPa 400 to 800
380 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
850
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 1000
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.4
Embodied Energy, MJ/kg 46
35
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
240 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
360 to 2940
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 26
27 to 40
Strength to Weight: Bending, points 15 to 22
24 to 31
Thermal Diffusivity, mm2/s 32
4.1
Thermal Shock Resistance, points 16 to 28
16 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
15 to 17
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 1.4 to 2.4
69.6 to 76.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
7.0 to 9.0
Nickel (Ni), % 0
1.5 to 3.0
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0