MakeItFrom.com
Menu (ESC)

C66300 Brass vs. AISI 302 Stainless Steel

C66300 brass belongs to the copper alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3 to 22
4.5 to 46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 290 to 470
400 to 830
Tensile Strength: Ultimate (UTS), MPa 460 to 810
580 to 1430
Tensile Strength: Yield (Proof), MPa 400 to 800
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
710
Melting Completion (Liquidus), °C 1050
1420
Melting Onset (Solidus), °C 1000
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 46
42
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
140 to 3070
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 26
21 to 51
Strength to Weight: Bending, points 15 to 22
20 to 36
Thermal Diffusivity, mm2/s 32
4.4
Thermal Shock Resistance, points 16 to 28
12 to 31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 1.4 to 2.4
67.9 to 75
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.35
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0