MakeItFrom.com
Menu (ESC)

C66300 Brass vs. AISI 347 Stainless Steel

C66300 brass belongs to the copper alloys classification, while AISI 347 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is AISI 347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3 to 22
34 to 46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 290 to 470
430 to 460
Tensile Strength: Ultimate (UTS), MPa 460 to 810
610 to 690
Tensile Strength: Yield (Proof), MPa 400 to 800
240 to 350

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1000
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
190 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
150 to 310
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 26
22 to 25
Strength to Weight: Bending, points 15 to 22
20 to 22
Thermal Diffusivity, mm2/s 32
4.3
Thermal Shock Resistance, points 16 to 28
13 to 15

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 1.4 to 2.4
64.1 to 74
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.35
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0