MakeItFrom.com
Menu (ESC)

C66300 Brass vs. AISI 440C Stainless Steel

C66300 brass belongs to the copper alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3 to 22
2.0 to 14
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 290 to 470
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 460 to 810
710 to 1970
Tensile Strength: Yield (Proof), MPa 400 to 800
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1000
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
22
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 46
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
39 to 88
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 26
26 to 71
Strength to Weight: Bending, points 15 to 22
23 to 46
Thermal Diffusivity, mm2/s 32
6.0
Thermal Shock Resistance, points 16 to 28
26 to 71

Alloy Composition

Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 1.4 to 2.4
78 to 83.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0