MakeItFrom.com
Menu (ESC)

C66300 Brass vs. ASTM Grade LC2-1 Steel

C66300 brass belongs to the copper alloys classification, while ASTM grade LC2-1 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is ASTM grade LC2-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3 to 22
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 460 to 810
810
Tensile Strength: Yield (Proof), MPa 400 to 800
630

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 180
450
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
46
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
5.0
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 46
25
Embodied Water, L/kg 320
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
150
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
1040
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 26
29
Strength to Weight: Bending, points 15 to 22
25
Thermal Diffusivity, mm2/s 32
12
Thermal Shock Resistance, points 16 to 28
24

Alloy Composition

Carbon (C), % 0
0 to 0.22
Chromium (Cr), % 0
1.4 to 1.9
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 1.4 to 2.4
92.5 to 95.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.55 to 0.75
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
2.5 to 3.5
Phosphorus (P), % 0 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0