MakeItFrom.com
Menu (ESC)

C66300 Brass vs. EN 1.7711 Steel

C66300 brass belongs to the copper alloys classification, while EN 1.7711 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is EN 1.7711 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3 to 22
16 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 290 to 470
440 to 570
Tensile Strength: Ultimate (UTS), MPa 460 to 810
690 to 930
Tensile Strength: Yield (Proof), MPa 400 to 800
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
33
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.0
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 46
32
Embodied Water, L/kg 320
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
130 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
430 to 1690
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 26
24 to 33
Strength to Weight: Bending, points 15 to 22
22 to 27
Thermal Diffusivity, mm2/s 32
8.9
Thermal Shock Resistance, points 16 to 28
24 to 32

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0
0.36 to 0.44
Chromium (Cr), % 0
0.9 to 1.2
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 1.4 to 2.4
96 to 97.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.45 to 0.85
Molybdenum (Mo), % 0
0.5 to 0.65
Phosphorus (P), % 0 to 0.35
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 3.0
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0