MakeItFrom.com
Menu (ESC)

C66300 Brass vs. Grade CW6MC Nickel

C66300 brass belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3 to 22
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 460 to 810
540
Tensile Strength: Yield (Proof), MPa 400 to 800
310

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1000
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 110
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
80
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 2.8
14
Embodied Energy, MJ/kg 46
200
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
130
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15 to 26
18
Strength to Weight: Bending, points 15 to 22
17
Thermal Diffusivity, mm2/s 32
2.8
Thermal Shock Resistance, points 16 to 28
15

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 1.4 to 2.4
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0 to 0.35
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0