MakeItFrom.com
Menu (ESC)

C66300 Brass vs. S32750 Stainless Steel

C66300 brass belongs to the copper alloys classification, while S32750 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66300 brass and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.3 to 22
17
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
81
Shear Strength, MPa 290 to 470
530
Tensile Strength: Ultimate (UTS), MPa 460 to 810
860
Tensile Strength: Yield (Proof), MPa 400 to 800
590

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1000
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
21
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.1
Embodied Energy, MJ/kg 46
56
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 98
130
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2850
860
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 26
31
Strength to Weight: Bending, points 15 to 22
26
Thermal Diffusivity, mm2/s 32
4.0
Thermal Shock Resistance, points 16 to 28
25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 84.5 to 87.5
0 to 0.5
Iron (Fe), % 1.4 to 2.4
58.1 to 66.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.35
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 1.5 to 3.0
0
Zinc (Zn), % 6.0 to 12.8
0
Residuals, % 0 to 0.5
0