MakeItFrom.com
Menu (ESC)

C66700 Brass vs. 2218 Aluminum

C66700 brass belongs to the copper alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C66700 brass and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
73
Elongation at Break, % 2.0 to 58
6.8 to 10
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 41
27
Shear Strength, MPa 250 to 530
210 to 250
Tensile Strength: Ultimate (UTS), MPa 340 to 690
330 to 430
Tensile Strength: Yield (Proof), MPa 100 to 640
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 180
390
Maximum Temperature: Mechanical, °C 140
220
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1050
510
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 97
140
Thermal Expansion, µm/m-K 20
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
37
Electrical Conductivity: Equal Weight (Specific), % IACS 19
110

Otherwise Unclassified Properties

Base Metal Price, % relative 25
11
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
450 to 650
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 11 to 23
30 to 39
Strength to Weight: Bending, points 13 to 21
34 to 41
Thermal Diffusivity, mm2/s 30
52
Thermal Shock Resistance, points 11 to 23
15 to 19

Alloy Composition

Aluminum (Al), % 0
88.8 to 93.6
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 68.5 to 71.5
3.5 to 4.5
Iron (Fe), % 0 to 0.1
0 to 1.0
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0.8 to 1.5
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 0
0 to 0.9
Zinc (Zn), % 26.3 to 30.7
0 to 0.25
Residuals, % 0
0 to 0.15