MakeItFrom.com
Menu (ESC)

C66700 Brass vs. 7010 Aluminum

C66700 brass belongs to the copper alloys classification, while 7010 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C66700 brass and the bottom bar is 7010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 2.0 to 58
3.9 to 6.8
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 41
26
Shear Strength, MPa 250 to 530
300 to 340
Tensile Strength: Ultimate (UTS), MPa 340 to 690
520 to 590
Tensile Strength: Yield (Proof), MPa 100 to 640
410 to 540

Thermal Properties

Latent Heat of Fusion, J/g 180
380
Maximum Temperature: Mechanical, °C 140
200
Melting Completion (Liquidus), °C 1090
630
Melting Onset (Solidus), °C 1050
480
Specific Heat Capacity, J/kg-K 390
860
Thermal Conductivity, W/m-K 97
150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
40
Electrical Conductivity: Equal Weight (Specific), % IACS 19
120

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
22 to 33
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
1230 to 2130
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 11 to 23
47 to 54
Strength to Weight: Bending, points 13 to 21
47 to 52
Thermal Diffusivity, mm2/s 30
58
Thermal Shock Resistance, points 11 to 23
22 to 26

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.6
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 68.5 to 71.5
1.5 to 2.0
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
2.1 to 2.6
Manganese (Mn), % 0.8 to 1.5
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.12
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 26.3 to 30.7
5.7 to 6.7
Zirconium (Zr), % 0
0.1 to 0.16
Residuals, % 0
0 to 0.15