MakeItFrom.com
Menu (ESC)

C66700 Brass vs. 7050 Aluminum

C66700 brass belongs to the copper alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C66700 brass and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 2.0 to 58
2.2 to 12
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 41
26
Shear Strength, MPa 250 to 530
280 to 330
Tensile Strength: Ultimate (UTS), MPa 340 to 690
490 to 570
Tensile Strength: Yield (Proof), MPa 100 to 640
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 180
370
Maximum Temperature: Mechanical, °C 140
190
Melting Completion (Liquidus), °C 1090
630
Melting Onset (Solidus), °C 1050
490
Specific Heat Capacity, J/kg-K 390
860
Thermal Conductivity, W/m-K 97
140
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
35
Electrical Conductivity: Equal Weight (Specific), % IACS 19
100

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
1110 to 1760
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 11 to 23
45 to 51
Strength to Weight: Bending, points 13 to 21
45 to 50
Thermal Diffusivity, mm2/s 30
54
Thermal Shock Resistance, points 11 to 23
21 to 25

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.1
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 68.5 to 71.5
2.0 to 2.6
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0.8 to 1.5
0 to 0.1
Silicon (Si), % 0
0 to 0.12
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 26.3 to 30.7
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15