MakeItFrom.com
Menu (ESC)

C66700 Brass vs. ACI-ASTM CB7Cu-1 Steel

C66700 brass belongs to the copper alloys classification, while ACI-ASTM CB7Cu-1 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is ACI-ASTM CB7Cu-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
5.7 to 11
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 340 to 690
960 to 1350
Tensile Strength: Yield (Proof), MPa 100 to 640
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1050
1500
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
13
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 45
38
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
1500 to 3590
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
34 to 48
Strength to Weight: Bending, points 13 to 21
28 to 35
Thermal Diffusivity, mm2/s 30
4.6
Thermal Shock Resistance, points 11 to 23
32 to 45

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15.5 to 17.7
Copper (Cu), % 68.5 to 71.5
2.5 to 3.2
Iron (Fe), % 0 to 0.1
72.3 to 78.4
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 0.7
Nickel (Ni), % 0
3.6 to 4.6
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0