MakeItFrom.com
Menu (ESC)

C66700 Brass vs. AISI 420 Stainless Steel

C66700 brass belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
8.0 to 15
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 57 to 93
84
Shear Modulus, GPa 41
76
Shear Strength, MPa 250 to 530
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 340 to 690
690 to 1720
Tensile Strength: Yield (Proof), MPa 100 to 640
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
620
Melting Completion (Liquidus), °C 1090
1510
Melting Onset (Solidus), °C 1050
1450
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
27
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 19
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
7.5
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 45
28
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
380 to 4410
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
25 to 62
Strength to Weight: Bending, points 13 to 21
22 to 41
Thermal Diffusivity, mm2/s 30
7.3
Thermal Shock Resistance, points 11 to 23
25 to 62

Alloy Composition

Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.1
82.3 to 87.9
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0