MakeItFrom.com
Menu (ESC)

C66700 Brass vs. EN 1.4303 Stainless Steel

C66700 brass belongs to the copper alloys classification, while EN 1.4303 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is EN 1.4303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 58
13 to 49
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 250 to 530
420 to 540
Tensile Strength: Ultimate (UTS), MPa 340 to 690
590 to 900
Tensile Strength: Yield (Proof), MPa 100 to 640
230 to 560

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
940
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 25
17
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
110 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
140 to 800
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
21 to 32
Strength to Weight: Bending, points 13 to 21
20 to 26
Thermal Diffusivity, mm2/s 30
4.0
Thermal Shock Resistance, points 11 to 23
13 to 20

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.1
64.8 to 72
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Nickel (Ni), % 0
11 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0

Comparable Variants