MakeItFrom.com
Menu (ESC)

C66700 Brass vs. EN 1.4477 Stainless Steel

C66700 brass belongs to the copper alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.0 to 58
22 to 23
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
81
Shear Strength, MPa 250 to 530
550 to 580
Tensile Strength: Ultimate (UTS), MPa 340 to 690
880 to 930
Tensile Strength: Yield (Proof), MPa 100 to 640
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
13
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
20
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
940 to 1290
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
31 to 33
Strength to Weight: Bending, points 13 to 21
26 to 27
Thermal Diffusivity, mm2/s 30
3.5
Thermal Shock Resistance, points 11 to 23
23 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 68.5 to 71.5
0 to 0.8
Iron (Fe), % 0 to 0.1
56.6 to 63.6
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0