MakeItFrom.com
Menu (ESC)

C66700 Brass vs. EN 1.4913 Stainless Steel

C66700 brass belongs to the copper alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
14 to 22
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
75
Shear Strength, MPa 250 to 530
550 to 590
Tensile Strength: Ultimate (UTS), MPa 340 to 690
870 to 980
Tensile Strength: Yield (Proof), MPa 100 to 640
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 140
700
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 97
24
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 19
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 45
41
Embodied Water, L/kg 320
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
600 to 1860
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
31 to 35
Strength to Weight: Bending, points 13 to 21
26 to 28
Thermal Diffusivity, mm2/s 30
6.5
Thermal Shock Resistance, points 11 to 23
31 to 34

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.1
84.5 to 88.3
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0