MakeItFrom.com
Menu (ESC)

C66700 Brass vs. EN 1.5520 Steel

C66700 brass belongs to the copper alloys classification, while EN 1.5520 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C66700 brass and the bottom bar is EN 1.5520 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 58
11 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 250 to 530
290 to 340
Tensile Strength: Ultimate (UTS), MPa 340 to 690
410 to 1410
Tensile Strength: Yield (Proof), MPa 100 to 640
300 to 480

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 97
50
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.9
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 150
42 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1900
240 to 600
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
15 to 50
Strength to Weight: Bending, points 13 to 21
16 to 36
Thermal Diffusivity, mm2/s 30
13
Thermal Shock Resistance, points 11 to 23
12 to 41

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 68.5 to 71.5
0 to 0.25
Iron (Fe), % 0 to 0.1
97.7 to 98.9
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0.8 to 1.5
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 26.3 to 30.7
0
Residuals, % 0 to 0.5
0